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A new Skyrme-like energy density suitable for studies of strongly elongated nuclei has been de-
termined in the framework of the Hartree-Fock-Bogoliubov theory using the recently developed
model-based, derivative-free optimization algorithm pounders. A sensitivity analysis at the opti-
mal solution has revealed the importance of states at large deformations in driving the parameter-
ization of the functional. The good agreement with experimental data on masses and separation
energies, achieved with the previous parameterization unedf0, is largely preserved. In addition, the
new energy density unedf1 gives a much improved description of the fission barriers in 240Pu and
neighboring nuclei.

PACS numbers: 21.60.Jz, 21.10.-k, 21.30.Fe, 21.65.Mn, 24.75.+i

I. INTRODUCTION

One of the focus areas of the UNEDF SciDAC col-
laboration [1, 2] has been the description of the fis-
sion process within a self-consistent framework based
on nuclear density functional theory (DFT). Until now,
attempts at going beyond the macroscopic-microscopic
methods [3] have been carried in the context of the orig-
inal self-consistent nuclear mean-field theory [4] with ei-
ther Skyrme (see, e.g., Refs. [5–9]) or Gogny (see, e.g.,
Refs. [10–13]) energy density functionals (EDFs). The
fundamental assumption of the nuclear DFT is that one
can describe accurately a broad range of phenomena
in nuclei, including excited states and large-amplitude
collective motion, by enriching the density dependence
of the functional while staying at the single-reference
Hartree-Fock-Bogoliubov (HFB) level. In this pic-
ture, beyond-mean-field corrections are implicitly built-
in. Preliminary studies aimed at re-examining the old
problem of restoring broken symmetries in this context
are promising [14, 15].

A common challenge to both the self-consistent mean
field and the DFT approach is the need to carefully op-
timize the EDF parameters to the preselected pool of
observables [4, 16–22]. In particular, special attention
must be paid to optimize the parameters in the same
regime where the theory will later be applied and to
choose the fit observables accordingly. In a recent work
[23], we showed that existing Skyrme EDFs exhibit a
significant spread in bulk deformation properties, and re-
emphasized [24, 25] that the resulting theoretical uncer-
tainties could be greatly reduced by considering data cor-
responding to large deformation in the optimization pro-
cess. Let us recall that the early Skyrme-type EDF SkM∗

[26] was in fact somewhat optimized for fission studies

in the actinide region by considering the experimental
information on the 240Pu fission barrier. However, the
optimization was not performed directly at the deformed
HFB level; instead, a semi-classical approach was used
based on the Thomas-Fermi approximation together with
shell-correction techniques. The D1S parameterization
of the finite-range Gogny force was also fine-tuned to
the first barrier height of 240Pu [27]. However, this fine-
tuning again was not done directly at the HFB level but
by a manual readjustment of the surface coefficient of the
EDF using a phenomenological model. Also, in the Bsk14
EDF of the HFB-14 mass model [28] by the Bruxelles-
Montréal collaboration, data on fission barriers were uti-
lized to optimize the EDF parameters by adding a phe-
nomenological collective correction. One may, therefore,
conclude that no EDF has ever been systematically op-
timized by explicitly considering constraints on states at
large deformations.

In a previous study [22], we applied modern optimiza-
tion and statistical methods, combined with leadership-
class computers, to carry out EDF optimization at the
deformed HFB level, namely, the approximation level
where the functional is later applied. The resulting EDF
parameterization unedf0 yields good agreement with ex-
perimental masses, radii, and deformations. The present
work represents an extension of [22] to the problem of
fission. In particular, it builds on the results reported
in Ref. [23], which concluded that the data on strongly
deformed nuclear states should be considered in the op-
timization protocol to constrain the surface properties of
the functional.

Here we propose the new EDF Skyrme parameteriza-
tion, unedf1, which is obtained by adding to the list
of fit observables the experimental excitation energies of
fission isomers in the actinides. To ensure that the func-
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tional can be used in fission and fusion studies, we have
removed the center-of-mass (c.o.m.) correction in the
spirit of the DFT. As in the case of unedf0, a sensitiv-
ity analysis has been performed at the solution in order to
identify possible correlations between model parameters
and assess the impact of the new class of fit observables
on the resulting parameterization.

This paper is organized as follows. In Sec. II we briefly
review the theoretical framework, establish the notation,
and justify the removal of the c.o.m. correction. Section
III defines the set of fit observables, discusses numerical
precision and implementation, and presents the new un-

edf1 parameter set together with the results of the sen-
sitivity analysis. To assess the impact of fission-isomer
data, we compare unedf1 with unedf0 in Sec. IV. In
Sec. V we study the performance of unedf1 with re-
spect to global nuclear observables, spectroscopic prop-
erties, fission, and neutron droplets. Section VI contains
the main conclusions and lays out future work.

II. THEORETICAL FRAMEWORK

A. Time-Even Skyrme Energy Density Functional

In the nuclear DFT, the total binding energy E of the
nucleus is a functional of the one-body density ρ and
pairing ρ̃ matrices. In its quasi-local approximation, it
can be written as a simple spatial integral:

E[ρ, ρ̃] =

∫

d3r H(r), (1)

where H(r) is the energy density that is quasi-local (it
usually depends on derivatives with respect to the lo-
cal densities), time-even, scalar, isoscalar, and real. It is
usually broken down into the kinetic energy and nuclear
potential (for both the particle-hole and particle-particle
channels) and Coulomb terms. For Skyrme functionals,
the particle-hole energy density χ(r) splits into χ0(r), de-
pending only on isoscalar densities, and χ1(r), depending
on isovector densities (and the isoscalar particle density
through the density dependence of the coupling constant
Cρρ

1 ; see below) [4, 29, 30]. Each term takes the generic
form

χt(r) = Cρρ
t ρ2

t + Cρτ
t ρtτt + CJ2

t J2
t

+Cρ∆ρ
t ρt∆ρt + Cρ∇J

t ρt∇ · Jt , (2)

where ρt, τt, and Jt (t = 0, 1) can all be expressed in
terms of ρt; see Ref. [4] for details. (For brevity, we have
omitted the explicit dependence of the densities on the
coordinate r.) The coupling constants are real numbers,
except for Cρρ

t , which is taken to be density-dependent:

Cρρ
t = Cρρ

t0 + Cρρ
tD ργ

0 . (3)

All volume coupling constants (Cρρ
t and Cρτ

t ) can be
related to the constants characterizing the infinite nu-
clear matter [22], and this relation was used during the

optimization in order to define the range of parameter
changes.

The Coulomb contribution is treated as usual by as-
suming a point proton charge. The exchange term was
computed at the Slater approximation:

ECoul
Exc (r) = −

3

4
e2

(

3

π

)1/3

ρ4/3
p . (4)

For the pairing energy density χ̃(r), we use the mixed
pairing description of [31] with

χ̃(r) =
∑

q=n,p

V q
0

2

[

1 −
1

2

ρ0(r)

ρc

]

ρ̃2(r) , (5)

where ρ̃ is the local pairing density. The value ρc=0.16
fm−3 is used throughout this paper. We allow for differ-
ent pairing strengths for protons (V p

0 ) and neutrons (V n
0 )

[32]. A cut-off of Ecut = 60 MeV was used to truncate
the quasi-particle space [33]. To prevent the collapse of
pairing, we used the Lipkin-Nogami procedure according
to [34].

B. Treatment of the center of mass

The success of the self-consistent mean-field theory is,
to a great extent, due to the concept of symmetry break-
ing. A classic example is the breaking of the translational
invariance by the mean field that is localized in space.
The associated c.o.m. correction to the binding energy
[4, 35, 36], −〈P̂ 2

c.m.〉/mA, is usually added to the DFT
binding energy in (1). This correction contributes typ-
ically a few MeV to the total energy. Moreover, it was
shown that adopting approximations to this correction
during the optimization of the functional could lead to
significantly different surface properties [4, 14, 37].

Since the c.o.m. correction is not additive in particle
number, it causes serious conceptual problems when deal-
ing with fission or heavy-ion fusion, that is, when one
considers the split of the nucleus into several fragments,
or formation of the compound nucleus through a merger
of two lighter ions. In fission studies, it was shown that
the contribution of the c.o.m. correction between the two
prefragments could amount to several MeV near scission
[38–40]. Moreover, properly computing this relative con-
tribution is difficult, as it reflects the degree of entan-
glement between prefragments [40, 41]. Time-dependent
Hartree-Fock calculations of low-energy heavy-ion reac-
tions are even more problematic, as there is currently no
solution to the discontinuity of the c.o.m. correction be-
tween the target+projectile system and the compound
nucleus [42, 43]: such calculations usually neglect the
c.o.m. term altogether, even though EDFs employed in
such calculations have been fitted with the c.o.m cor-
rection included. Note that the same problem occurs
with the so-called rotational correction arising from the
breaking of rotational invariance by deformed mean fields
[38, 44].
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Another undesired property of the c.o.m. correction is
that it slightly breaks the variational nature of HFB when
adding or subtracting a particle [45], i.e., it violates the
Koopmans theorem. The resulting s.p. energy shifts are
quite significant, of the order of mass polarization effect.

As discussed in Sec. I, the EDF is supposed to cap-
ture all the physics of interest at the HFB level. In
other words, the functional is to be built from the full
single-reference density matrix. While the HFB vacuum
breaks the translational symmetry, the associated correc-
tion term should be absorbed in the density dependence.
In particular, it should be possible to express the c.o.m.
term not as an explicit function of A, as currently being
done, but through a density functional. Until a simple
prescription is proposed, however, it is more consistent to
simply drop all corrections that originate from a Hamil-
tonian view of the problem, including the c.o.m. term.
And, since our focus in on fission, this is precisely what
we have done in this work.

III. OPTIMIZATION AND SENSITIVITY
ANALYSIS

A. Experimental Dataset

Since the focus of this study is the construction of
an EDF optimized for fission, our experimental dataset
has been expanded by including the excitation energies
(bandheads) of four fission isomers (FIs) listed in Ta-
ble I. The ground-state (g.s.) binding energies of 238U,
240Pu, and 242Cf, not included in the previous unedf0

dataset [22], were added for consistency (the g.s. energy
of 236U was already there). Consequently, compared with

TABLE I: Experimental excitation energies of fission isomers
[46] (in MeV) considered in the unedf1 dataset.

Z N E
92 144 2.750
92 146 2.557
94 146 2.800
96 146 1.900

unedf0, the unedf1 dataset contains seven new data
points: three additional g.s. masses of deformed nuclei,
and four excitation energies of FIs. For the FIs, we used
the weight wi = 0.5MeV in the χ2 objective function

χ2(x) =
∑

i

(

si(x) − di

wi

)2

. (6)

The χ2 weights for binding energies, proton rms radii,
and odd-even mass (OEM) staggering are the same as in
Ref. [22].

Two assumptions made in [22] were also adopted here:
(i) since the isovector effective mass cannot be reliably

constrained by the current data, it was set to 1/M∗
v =

1.249 as in unedf0 and the original SLy4 parameteriza-
tion [47]; and (ii) since tensor terms are mostly sensitive
to the single-particle (s.p.) shell structure, which is not
directly constrained by the unedf1 dataset, the tensor

coupling constants CJ2

0 and CJ2

1 were set to zero. In
summary, compared with unedf0 [22], the optimization
of unedf1 is characterized by the following:

• The same 12 EDF parameters to be optimized,

namely, ρc, ENM/A, KNM, aNM
sym, LNM

sym, M∗
s , Cρ∆ρ

0 ,

Cρ∆ρ
1 , V n

0 , V p
0 , Cρ∇J

0 , and Cρ∇J
1 ;

• 7 additional data points: 3 new masses and 4 FI
energies with the weights w = 0.5MeV;

• Neglect of the c.o.m. correction term.

B. Numerical Precision and Implementation

All HFB calculations were run with the code hfbtho

[48]. The code expands the HFB solutions on the axially
symmetric, deformed harmonic oscillator (HO) basis. In
the optimization of unedf0, we used a spherical basis
with 20 HO shells, which was found to give a good com-
promise between the numerical precision and computa-
tional performance. The current optimization includes
states with much larger deformation than in the ground
state, and the dependence of the energies with respect to
the set of basis states is more significant.

In the unedf1 optimization, all quantities but the four
fission isomers were computed with the spherical HO ba-
sis of Nsh = 20 shells, which includes N = 1771 basis
states. For the fission isomers, we adopted a stretched
HO basis with deformation β = 0.4. The basis con-
tains up to Nsh = 50 oscillator shells with an upper
limit of N = 1771 basis states with lowest HO s.p. en-
ergies. The oscillator frequency ω3

0 = ω2
⊥ω‖ was set at

~ω0 = 1.2 × 41/A1/3 MeV. As seen in Fig. 1, at this se-
lection of the HO basis, the dependence of FI energies
on the basis deformation remains fairly constant around
β = 0.4. Moreover, the range of variations is significantly
less than the corresponding χ2 weight, wi = 0.5MeV.

Optimization calculations were performed on Ar-
gonne National Laboratory’s Fusion cluster, managed
by Argonne’s Laboratory Computing Resource Center
(LCRC). Fusion consists of 320 computing nodes, each
dual quad-core Pentium Xeon processor. By using In-
tel’s Math Kernel Library and the Intel Fortran compiler
(ifort), we were able to run hfbtho in almost half the
time when compared with the prebuilt reference BLAS li-
brary implementation and GNU’s gfortran compiler. We
were also able to dramatically reduce the wall-clock time
of an hfbtho computation by using OpenMP at the node
level to parallelize key computational bottlenecks. These
bottlenecks involved iteratively computing the eigenval-
ues and eigenvectors of the (Ω, π) blocks of the HFB
matrix, as well as the density calculations reflecting the



4

 0.0  0.2  0.4  0.6
Basis Deformation �2

 1.5

 2.0

 2.5

 3.0

 3.5
E
x
ci

ta
ti

o
n
 E

n
e
rg

y
 (

M
e
V

)
UNEDF1 236 U

238 U

240 Pu
242 Cm

FIG. 1: (Color online) Excitation energies of fission isomers
considered in the unedf1 optimization as functions of the HO
basis deformation.

same block pattern. OpenMP allowed us to dynamically
assign processors to blocks of data for parallel processing,
which further reduced the wall-clock time by a factor of
6 when running on an eight-core node.

The parameter estimation computations presented in
this paper ran 218 total simulations of hfbtho for each
nucleus in the dataset, using 80 compute nodes (640
cores) for 5.67 hours. As highlighted in [22], using the
pounders algorithm (Practical Optimization Using No
Derivatives (for Squares)) on the type of fitting prob-
lem considered here requires more than 10 times fewer
hfbtho runs over a more traditional, derivative-free
Nelder-Mead optimization method [49]. Hence, with-
out the algorithmic and computational advancements de-
tailed above, a similar optimization could have previously
consumed a month of computations using 80 cores of the
Fusion cluster.

We emphasize that, strictly speaking, both the un-

edf0 and the unedf1 parameterizations obtained in this
work should always be used in their original environment.
In particular, the pairing EDF should be that of Eq. (5)
used with the original pairing space cut off; pairing calcu-
lations must be complemented by the Lipkin-Nogami pre-
scription; and the proton and neutron pairing strengths
must not vary from the values determined by our opti-
mization. In short, contrary to usual practice, there is
no flexibility in the treatment of the pairing channel.

C. Result of the Optimization: UNEDF1
Parameter Set

The starting point for our pounders optimization was
the previously obtained unedf0 parameterization. After
177 simulations, the algorithm reached the new optimal
result. The resulting parameter set is listed in Table II.
The first six parameters were restricted to lie within finite

bounds, also listed in Table II, that were not allowed to
be violated during the optimization procedure. As can be
seen, parameters ENM/A and KNM are on the boundary
value. In the case of unedf0, we recall that KNM and
1/M∗

s also ended up at their respective boundaries. The
saturation density ρc is given with more digits than the
other parameters. Such extra precision is needed when
computing volume coupling constants [22].

TABLE II: Optimized parameter set unedf1. Listed are
bounds used in the optimization, final optimized parameter
values, standard deviations, and 95% confidence intervals.

x Bounds x̂(fin.) σ 95% CI
ρc [0.15,0.17] 0.15871 0.00042 [ 0.158, 0.159]
ENM/A [-16.2,-15.8] -15.800 – –
KNM [220, 260] 220.000 – –
aNM
sym [28, 36] 28.987 0.604 [ 28.152, 29.822]

LNM
sym [40, 100] 40.005 13.136 [ 21.841, 58.168]

1/M∗

s [0.9, 1.5] 0.992 0.123 [ 0.823, 1.162]

Cρ∆ρ
0 [−∞, +∞] -45.135 5.361 [ -52.548, -37.722]

Cρ∆ρ
1 [−∞, +∞] -145.382 52.169 [-217.515, -73.250]

V n
0 [−∞, +∞] -186.065 18.516 [-211.666,-160.464]

V p
0 [−∞, +∞] -206.580 13.049 [-224.622,-188.538]

Cρ∇J
0 [−∞, +∞] -74.026 5.048 [ -81.006, -67.046]

Cρ∇J
1 [−∞, +∞] -35.658 23.147 [ -67.663, -3.654]

We first note that the same minimum was obtained
by starting either from the unedf0 solution or from the
SLy4 parameterization: this gives us confidence that the
parameter set listed in Table II is sufficiently robust. We
can then observe that most of the parameter values of
unedf1 are fairly close to those of unedf0 [22]. There
are, nevertheless, a couple of notable exceptions. First,

the magnitude of Cρ∆ρ
1 is now much larger. This is po-

tentially dangerous, as it might trigger scalar-isovector
instabilities in the functional that could appear in time-
odd channels of neutron-rich nuclei [50, 51]. (Our mass-
table calculations with unedf1 do not show indications
of instability in even-even nuclei.) Second, Cρ∇J

1 has
drifted considerably from its initial value, even changing
sign. These two coupling constants control the isovector
surface properties of the nucleus; hence, only proper con-
straints on the shell structure like, for example, spin-orbit
splitting in neutron-rich nuclei will allow these terms to
be pinned down. For the moment, both coupling con-
stants are relatively unconstrained, as evidenced also by
their relatively large σ-value shown in Table II.

D. Sensitivity Analysis

1. Correlation Matrix of unedf1

We have performed a sensitivity analysis at the solu-
tion of the optimization. All residual derivatives were
estimated by using the optimal finite-difference proce-
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TABLE III: Correlation matrix for unedf1 parameter set. Correlations greater than 0.8 (in absolute value) are in boldface.

ρc 1.00
aNM
sym -0.35 1.00

LNM
sym -0.14 0.71 1.00

1/M∗

s 0.32 0.23 0.36 1.00

Cρ∆ρ
0 -0.25 -0.25 -0.35 -0.99 1.00

Cρ∆ρ
1 -0.06 -0.15 -0.77 -0.22 0.19 1.00

V n
0 -0.32 -0.22 -0.36 -0.99 0.98 0.22 1.00

V p
0 -0.33 -0.18 -0.29 -0.97 0.97 0.15 0.96 1.00

Cρ∇J
0 -0.14 -0.20 -0.32 -0.86 0.91 0.22 0.85 0.84 1.00

Cρ∇J
1 0.05 -0.17 -0.13 -0.10 0.07 0.21 0.10 0.07 -0.03 1.00

ρc aNM
sym LNM

sym 1/M∗
s Cρ∆ρ

0 Cρ∆ρ
1 V n

0 V p
0 Cρ∇J

0 Cρ∇J
1

dure detailed in Ref. [52]. Since some of the parameters
ran at their bounds during the optimization, the sensitiv-
ity analysis was carried out in a subspace that does not
contain these parameters. The same strategy was also
used in the previous sensitivity analysis of the unedf0

parameterization; we refer to [22] for a detailed discus-
sion of the available options in the case of constrained
optimization. In Table II we list the standard deviation,
σ, and 95% confidence interval (CI) for each parameter
at the solution. As discussed in Sec. III C, the standard
deviations of most of the parameters is relatively small.

The correlation matrix for the unedf1 parameter set
is presented in Table III. It was calculated as in [22]
and, similarly, corresponds to the 10-dimensional sub-
space of the parameters that are not at their boundary
value. Generally, most of the parameters are only slightly
correlated to each other, with a few notable exceptions
(correlations below 0.8 are not very significant from a sta-
tistical viewpoint). The strong correlation between 1/M∗

s

and both V n
0 and V p

0 had already been noticed in the un-

edfnb parameter set of Ref. [22] and reflects the inter-
play between the level density at the Fermi-surface and
the size of pairing correlations. Similarly, both pairing

strengths are strongly correlated with Cρ∆ρ
0 , which can

also be related to surface properties of the functional. In-
terestingly, both pairing strengths are now strongly cor-
related with one another, which was not the case with
unedf0. The same correlation matrix of Table III is
shown graphically in Fig. 2.

Next, we study the overall impact of each data type in
our χ2 function on the obtained parameter set. As in [22]
we calculate the partial sums of the sensitivity matrix for
each data type. Let us recall that the sensitivity matrix
S is defined as

S(x) =
[

J(x)JT(x)
]−1

J(x) , (7)

where J(x) is the Jacobian matrix. The results are illus-
trated in Fig. 3, where we have summed absolute values
of each data type for each parameter. The total strengths
for each parameter were then normalized to 100%. Note
that the fission isomer excitation energies represent less
than 4% of the total number of data points but account

0
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FIG. 2: (Color online) Absolute values of the correlation ma-
trix of Table III presented in a color-coded format.

for typically 30% of the variation of the parameter set. In
the case of the symmetry energy coefficient, this percent-
age is even 75% (see Sec. IV for more discussion). Com-
pared with unedf0, we find that the overall dependence
on the proton radii has significantly decreased, except for

ρ and Cρ∆ρ
1 , and that the dependence on the OES has

actually increased. This kind of analysis, however, does
not address the importance of a particular data point to
the obtained optimal solution.

A complementary way to study the impact of an indi-
vidual datum on the obtained parameter set is therefore
presented in Fig. 4. Here, we have plotted the amount
of variation

||δx/σ|| =

√

√

√

√

∑

k

(

δxk

σ

)2

(8)

for the optimal parameter set when data points di are
changed by an amount of 0.1wi one by one. As can be
seen, the variations are small overall, assuring us that the
dataset was chosen correctly. The masses of the double
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FIG. 3: (Color online) Sensitivity of unedf1 to different types
of data entering the χ2 function.

magic nuclei 208Pb and 58Ni seem to have the biggest rel-
ative impact on the optimal parameter set. One can also
see that the sensitivity of the parameters on the new FI
data is larger than the average datum point. By contrast,
the dependence of the parameterization on the masses of
deformed actinide and rare earth nuclei is weaker.

Masses (def)

Masses (sph) Charge radii OES FI

FIG. 4: (Color online) Overall change in x for the unedf1

when the datum di is changed by an amount of 0.1wi one by
one. The four rightmost data points marked FI correspond to
excitation energies of fission isomers. The results for unedf0

and unedf1ex of Sec. III D 2 are also shown.

2. Discussion of the Coulomb Exchange Term

It has been argued in [53] that removing the Coulomb
exchange term from the functional could improve the
overall fit on nuclear binding energies. This procedure
had been motivated by the earlier works Refs. [54, 55], in
which similar ameliorations, albeit on a smaller dataset,
were observed. The origin of these ad hoc manipulations
was the observation that many-body effects induced by
the long-range Coulomb force among protons manifest
themselves in the form of a (positive) correlation energy,
which, to some extent, can cancel out the (negative) ex-
change term [56, 57]. Since such an exchange-correlation
effect is absent from the standard Skyrme functional, one
could feel justified to simulate it by effectively screen-
ing the Coulomb exchange term with an empirical factor
0 ≤ αex ≤ 1. The special cases αex = 0 and αex = 1 give,
respectively, the case without and with full Coulomb ex-
change.

TABLE IV: Optimized parameter set unedf1ex. Listed are
bounds used in the optimization, final optimized parameters,
standard deviations, and 95% confidence intervals.

x Bounds x̂(fin.) σ 95% CI
ρc [0.15, 0.17] 0.15837 0.00049 [ 0.158, 0.159]
ENM/A [-16.2, -15.8] -15.800 – –
KNM [220, 260] 220.000 – –
aNM
sym [28, 36] 28.384 0.711 [ 27.417, 29.351]

LNM
sym [40, 100] 40.000 – –

1/M∗

s [0.9, 1.5] 1.002 0.123 [ 0.835, 1.169]

Cρ∆ρ
0 [−∞, +∞] -44.602 5.349 [ -51.872, -37.331]

Cρ∆ρ
1 [−∞, +∞] -180.956 47.890 [-246.050,-115.863]

V n
0 [−∞, +∞] -187.469 18.525 [-212.649,-162.288]

V p
0 [−∞, +∞] -207.209 13.106 [-225.024,-189.395]

Cρ∇J
0 [−∞, +∞] -74.339 5.187 [ -81.389, -67.289]

Cρ∇J
1 [−∞, +∞] -38.837 23.435 [ -70.690, -6.984]

αex [ 0, 1] 0.813 0.154 [ 0.604, 1.023]

The result of the optimization of the functional with
this additional parameter αex is given in Table IV. Our
objective function is slightly decreased from 51.058 to
49.341 when this term is present. Overall, both param-
eterizations, with and without the Coulomb exchange
screening term, are very similar. However, one can see
that the 95% CI is relatively large for the screening
parameter, the value of which is also close to 1 (full
Coulomb exchange). We recall that this confidence in-
terval is extracted from the correlation matrix computed
in the 10-D space of “inactive” parameters, namely, the
space of the 10 parameters that are not at their bound
and thus actively constrained. If one computes the Jaco-
bian matrix in the original 13-D space of all parameters
with a tangent plane approximation to account for the
three active parameters ENM, KNM, and LNM

sym, we find
that the 95% CI for the screening parameter becomes
[-1.663,3.290]. This implies that αex is basically not con-
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strained with the current dataset.
The dependence of every parameter on the four types

of data included in the dataset (masses, charge radii,
OES, and FI data) reveal an interesting consequence of
the screening of the Coulomb exchange term. Figure 5
shows the analogue of Fig. 3 when the screening pa-
rameter αex is included. Note the striking difference in
the bar plot for the symmetry energy parameter aNM

sym:
fluctuations in this parameter under a variation of the
excitation energy of the fission isomers are reduced to
less than 10%, compared with nearly 75% when the full
Coulomb exchange term is computed.
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FIG. 5: (Color online) Similar as in Fig. 3 but for the un-

edf1ex parameter set.

This behavior can be qualitatively understood by re-
calling a few simple facts about the bulk nuclear energy
and deformation. A variation of the excitation energy of
very deformed states such as fission isomers essentially
affects the bulk surface properties of the functional—
especially if the coupling constants driving shell effects
are somewhat constrained by the dataset. In the lan-
guage of the leptodermous expansion of Sec. IVC, this
implies that both the surface and surface-symmetry en-
ergy coefficients (which depend in a nontrivial way on the
coupling constants of the functional) should be impacted.
On the other hand, we may assume that the isospin de-
pendence of the binding energy (i.e., the total symmetry
energy) is relatively well constrained by the several long
isotopic sequences present in our dataset. We therefore
see that the requirement of having the full symmetry en-
ergy constrained together with a relatively large varia-
tion of the surface terms should lead to a relatively large
variation of the volume symmetry aNM

sym, which is indeed
observed in Fig. 4.

One can now understand the difference of behavior of
aNM
sym under a change of data when the Coulomb screen-

ing term is present: according to [56, 57], the many-body
Coulomb correlation energy that is simulated by αex < 1

essentially represents a proton surface effect. Changes
in bulk surface properties triggered by variations in the
excitation energy of fission isomers can be entirely ab-
sorbed by a readjustment of αex, especially since the lat-
ter is poorly constrained by the other data, rather than
by aNM

sym.
In summary, considering that (i) αex is poorly con-

strained by the data, yet may affect significantly other
parameters like aNM

sym and (ii) αex does not significantly
improve the quality of the fit, we decided to retain the
full Coulomb exchange term in the present unedf1 pa-
rameterization.

IV. CHARACTERIZATION OF UNEDF1
PARAMETERIZATION

In this section, we discuss general properties of the
unedf1 parameterization and compare it with unedf0.

A. Energy Density in (t, x) Parameterization

For practical applications, it is useful to express the
coupling constants of unedf0 and unedf1 in the tra-
ditional (t, x)-parameterization of the standard Skyrme
force, see Appendix A of [4]. The results are given in
Table V. As can be seen, in the (t, x)-parameterization

TABLE V: Parameters (t, x) of unedf0 and unedf1

Par. unedf0 unedf1 Units
t0 −1883.68781034 −2078.32802326 MeV·fm3

t1 277.50021224 239.40081204 MeV·fm5

t2 608.43090559 1575.11954190 MeV·fm5

t3 13901.94834463 14263.64624708 MeV·fm3+3γ

x0 0.00974375 0.05375692 -
x1 −1.77784395 −5.07723238 -
x2 −1.67699035 −1.36650561 -
x3 −0.38079041 −0.16249117 -
b4 125.16100000 38.36807206 MeV·fm5

b′4 −91.2604000 71.31652223 MeV·fm5

γ 0.32195599 0.27001801 -

the two functionals are quite different. This is to be
expected as the relation between the C and (t, x) param-
eterizations is nonlinear [58].

B. Energy Density Parameters in Natural Units

The EDF parameters can also be expressed in terms of
natural units [58]. In Table VI we list the parameter set
of unedf1 in standard units and in natural units. Here
we have used the same value for the scale Λ = 687MeV,
characterizing the breakdown of the chiral effective the-
ory, which has been found in Ref. [58]. From the numbers
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in Table VI one can see that most of the unedf1 param-
eters are natural, with only two minor exceptions. First,
because the effective mass M∗

s in our optimum is close to

unity, the Cρτ
0 is abnormally small. Second, Cρ∆ρ

1 seems
be on the borderline of being unnaturally large. As Ta-
ble II indicates, however, the standard deviation for this
parameter is rather large.

TABLE VI: Coupling constants of unedf0 and unedf1 in
normal units and in natural units. Value Λ = 687 MeV was
used.

unedf0 unedf1

Coupling Normal Natural Normal Natural
Constant Units Units Units Units
Cρρ

00 -706.38 -0.795 -779.37 -0.878
Cρρ

10 240.26 0.271 288.01 0.324
Cρρ

0D 868.87 0.901 891.48 0.937
Cρρ

1D -69.77 -0.072 -201.37 -0.212
Cρτ

0 -12.92 -0.176 -0.99 -0.014
Cρτ

1 -45.08 -0.616 -33.52 -0.458

Cρ∆ρ
0 -55.26 -0.755 -45.14 -0.616

Cρ∆ρ
1 -55.62 -0.759 -145.38 -1.985

Cρ∇J
0 -79.53 -1.086 -74.03 -1.011

Cρ∇J
1 45.63 0.623 -35.66 -0.487

γ 0.3220 0.2700

C. Leptodermous Expansion

To extract global properties of the energy functional
and relate them to the familiar constants of the liquid
drop model (LDM), one needs to carry out the leptoder-
mous expansion. The general strategy behind the expan-
sion of nuclear EDF has been discussed in Ref. [59], where
one can find the relevant literature on this topic. The
starting point is the LDM binding energy per nucleon
expanded in the inverse radius (∝ A−1/3) and neutron
excess I = (N − Z)/A:

E(A, I) = avol + asurfA
−1/3 + acurvA

−2/3

+ asymI2 + assymA−1/3I2

+ a(2)
symI4.

(9)

For any functional, our approach consists of combin-
ing nuclear matter (NM) calculations with Hartree-Fock
(HF) calculations for a large set of spherical nuclei to ex-
tract by linear regression the various parameters of the
expansion (9) according to the following procedure.

First, the bulk parameters avol and asym are directly
obtained from NM calculations. Second, the smooth en-
ergy per nucleon Ē(A, I) is extracted from the spherical
HF calculations of (A, I) nuclei by removing the shell
correction [59]. The isoscalar coefficients of the expan-
sion (9) can then be deduced from the smooth energy by

TABLE VII: Liquid drop coefficients of unedf0 and unedf1

(all in MeV).

avol asym a
(2)
sym asurf acurv assym

unedf0 -16.056 30.543 4.418 18.7 7.1 -44
unedf1 -15.800 28.987 3.637 16.7 8.8 -29
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FIG. 6: (Color online) Surface-symmetry coefficient (15) (up-

per panels) and surface coefficient (lower panels) versus A−1/3

for unedf0 (left) and unedf1 (right).

plotting

[

Ē(A, 0) − avol

]

A1/3 −→ asurf + acurvA
−1/3 (10)

as a function of A−1/3. The asurf coefficient is obtained as
the extrapolation of the curve to A−1/3 −→ 0. The cur-
vature coefficient acurv is then estimated from the slope
of the line.

The determination of isovector coefficients starts with
the second-order symmetry coefficient a

(2)
sym. It is easily

estimated by systematic calculations in asymmetric NM.
Defining

a
(eff)
sym (∞, I) =

[

ENM(∞, I) − ENM(∞, 0)
]

/I2

−→ asym + a
(2)
symI2,

(11)

one can extract the second-order symmetry coefficient

from the slope of a
(eff)
sym (∞, I) vs. I2. Extracting the

surface-symmetry coefficient is more involved. We first
introduce the effective symmetry coefficient for a finite
nucleus as

a
(eff)
sym (A, I) =

[

Ē(A, I) − Ē(A, 0)
]

/I2

−→ asym + assymA−1/3 + a
(2)
symI2.

(12)

In nuclear matter (A → +∞), the effective symmetry
coefficient reduces to (11). To avoid multidimensional
regression analysis, we introduce the reduced symmetry
coefficient by subtracting the I2-dependent part of the
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NM limit to a
(eff)
sym :

a(red)
sym (A, I) =

[

Ē(A, I) − Ē(A, 0)
]

/I2 − a(2)
symI2. (13)

At the perfect LDM limit, the quantity a
(red)
sym (A, I)

should not depend on the neutron excess. At small
isospins, however, numerical uncertainties in the shell-
correction procedure are amplified by the I2 denomina-
tor. In practice, it is more efficient to build an I-averaged
reduced asymmetry coefficient,

a
(red)
sym =

1

b − a

∫ b

a

dI a(red)
sym (A, I), (14)

where we choose a = 0.1 and b = 0.2 [59]. The surface-
symmetry energy is then obtained from

[

a
(red)
sym − asym

]

A1/3 = assym. (15)

Figure 6 illustrates the numerical accuracy of the
method of evaluation for the surface and surface-
symmetry coefficients of the LDM. The dashed blue lines
indicate the fitting lines from which the final values of
asurf , acurv, and assym are deduced. The case of unedf1

seems to be clear. The trend of the surface energy for
unedf0 is less clean. The two groups of nuclei, huge
and large, seem to follow slightly different slopes, and
the fit represents a compromise. The resulting surface
and curvature energy have to be taken with care.

The LDM parameters of unedf0 and unedf1 are
given in Table VII. As seen in Table I of Ref. [59] and
Fig. 1 of Ref. [23], symmetry coefficients of phenomeno-
logical LDM mass models cluster around asym = 30MeV
and assym = −45MeV, and the unedf0 values are right
in the middle. This result is not surprising, as this
EDF was optimized primarily to nuclear masses. Indeed,
the main difference between unedf0 and unedf1 lies
in surface properties. Relatively low values of asurf and
assym of unedf1 reflect the new constraints on the FI
data and the neglect of the c.o.m. term. Again, com-
paring the LDM values of unedf1 with those in Ta-
ble I of Ref. [59], we note that the LDM parameters
of unedf1 are closest to those of the BSk6 EDF [60]
(asurf = 17.3MeV and assym = −33MeV) and the LSD
LDM [61] (asurf = 17.0MeV and assym = −38.9MeV).
In Sec. V C, we shall see that the reduced surface en-
ergy of unedf1 with respect to unedf0 has profound
consequences for the description of fission barriers in the
actinides. To see this reduction more clearly, we inspect
the effective surface coefficient

a
(eff)
surf = asurf + assymI2. (16)

For 240Pu, the value of a
(eff)
surf is 15.33MeV for unedf1,

16.63MeV for unedf0, 15.87MeV for SLy4, 15.75MeV
for BSk6, 15.15MeV for SkM∗, and 15.17MeV for LSD.

V. PERFORMANCE OF UNEDF1

A. Global Mass Table

One of the key elements required from the universal
EDF is the ability to predict global nuclear properties,
such as masses, radii, and deformations, across the nu-
clear chart, from drip line to drip line. We have cal-
culated the g.s. mass table with unedf1 for even-even
nuclei with N, Z > 8. Table VIII contains the rms de-
viations from experiment for binding energies, separa-
tion energies, averaged three-point odd-even mass differ-
ences, and proton radii. Since the set of fit observables
constraining unedf1 is biased toward heavy nuclei, we
also show rms deviations for light (A < 80) and heavy
(A ≥ 80) subsets.

TABLE VIII: Root-mean-square deviations from the exper-
imental values for unedf0 and unedf1 for different observ-
ables calculated in even-even systems: binding energy E, two-
neutron separation energy S2n, two-proton separation energy

S2p, three-point odd-even mass difference ∆̃
(3)
n (all in MeV),

and rms proton radii Rp (in fm). Columns are observable,
RMS deviation for unedf0 and unedf1, and the number of
data points.

Observable unedf0 unedf1 #
E 1.428 1.912 555
E (A < 80) 2.092 2.566 113
E (A ≥ 80) 1.200 1.705 442

S2n 0.758 0.752 500
S2n (A < 80) 1.447 1.161 99
S2n (A ≥ 80) 0.446 0.609 401

S2p 0.862 0.791 477
S2p (A < 80) 1.496 1.264 96
S2p (A ≥ 80) 0.605 0.618 381

∆̃
(3)
n 0.355 0.358 442

∆̃
(3)
n (A < 80) 0.401 0.388 89

∆̃
(3)
n (A ≥ 80) 0.342 0.350 353

∆̃
(3)
p 0.258 0.261 395

∆̃
(3)
p (A < 80) 0.346 0.304 83

∆̃
(3)
p (A ≥ 80) 0.229 0.248 312

Rp 0.017 0.017 49
Rp (A < 80) 0.022 0.019 16
Rp (A ≥ 80) 0.013 0.015 33

Figure 7 displays the binding energy residuals (i.e.,
deviations from experiment). From this figure and Ta-
ble VIII, we can see a couple of trends. First, the en-
ergy residuals with unedf1 are larger than those for un-

edf0. This result is not surprising, as the new data on FI
and the removal of the center-of-mass correction strongly
disfavors the lightest nuclei during the optimization pro-
cess. Second, the characteristic arc-like behavior between
the magic numbers is pronounced, although this trend is
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much weaker than, for example, for the SLy4 functional
(see Fig. 7 of Ref. [22]).

UNEDF1

FIG. 7: (Color online) Binding energy residuals between un-

edf1 results and experiment for 555 even-even nuclei. Iso-
topic chains of a given element are connected by lines.

In Fig. 8 we display the residuals of two-neutron and
two-proton separation energies. Again, the emphasis of
unedf1 on heavy nuclei is clearly seen, and the corre-
sponding rms deviations in Table VIII quantify this fea-
ture. Notice that two-proton separation energies are sys-
tematically overestimated. The same trend is observed
for the unedf0 functional. We can speculate about
sources for this effect: (i) Following the arguments of
[56], one may argue that the standard Skyrme function-
als, such as unedf0 and unedf1, lack the capability to
describe many-body Coulomb effects; (ii) The explicit
contribution of the Coulomb field to the pairing channel
[62, 63] is not taken into account. It is expected that
separate pairing strengths for neutrons and protons, as
in unedf1, will partly account for this missing contri-
bution [32]. However, the existence of nontrivial correla-
tions between pairing strengths and other parameters of
the functional (see Table III) may have consequences for
observables such as two-proton separation energies.

To compare unedf0 and unedf1 quantitatively, we
can assess their performance on various observables listed
in Table VIII. It is expected that since new constraints on
fission isomers have been added when optimizing unedf1

while keeping the same number of parameters optimized,
the rms deviations for masses and separation energies
must increase. Indeed, the rms deviation for the masses
is slightly worse for unedf1, for both light and heavy
nuclei. Interestingly, the quality of S2n values remains
roughly the same in both cases, as is true also for odd-
even mass differences and proton radii.

UNEDF1

FIG. 8: (Color online) Two-neutron (top) and two-proton
(bottom) separation energy residuals between unedf1 results
and experiment.

B. Spherical Shell Structure

The nuclear shell structure has a substantial impact on
many nuclear properties. Notably, the single-particle lev-
els close to the Fermi surface affect many nuclear prop-
erties such as the strength of pairing correlations and
deformability. Compared with our previous work [22],
the s.p. energies that we report here have been obtained
from proper blocking calculations at the HFB+LN level
[64], instead of being the eigenvalues of the HF Hamil-
tonian. This choice is motivated by the need to stay
within a logically consistent framework: both unedf0

and unedf1 have been optimized at the HFB+LN level,
and hence should be employed exclusively in this context.
Moreover, in the nuclear mean-field theory with effective
interactions, HF eigenvalues are a poor representation of
s.p. energies; see [65, 66] for a recent study. In a DFT ap-
proach, however, it is assumed that the generalized form
of the energy density may effectively account for beyond
mean-field effects such as particle-vibration couplings. In
addition to this theoretical argument, let us recall that
s.p. energies are not observables but model-dependent
quantities extracted experimentally from binding ener-
gies of excited states in odd nuclei. Systematic errors
can thus be reduced by working exclusively with binding
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energies.
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FIG. 9: (Color online) Single-proton energies for 208Pb, cal-
culated with unedf0 and unedf1 EDFs compared to the ex-
perimental values of Ref. [67].

To this end, we computed a number of one-quasi-
particle (q.p.) configurations for the odd-mass neighbors
of 16O, 40Ca, 48Ca, 56Ni, 132Sn, and 208Pb. Calcula-
tions were done at the equal filling approximation, which
is an excellent approximation to the full time-reversal,
symmetry-breaking blocking scheme [64]. Blocking q.p.
states induces a small shape polarization [45], which in
turn leads to a fragmentation of spherical s.p. orbitals of
angular momentum j into 2j + 1 levels Ω = −j, . . . , +j.
In principle, the “experimental” s.p. energy should be
the average energy over all the 2j +1 blocking configura-
tions. However, a state with the projection Ω can belong
to any spherical orbit j ≥ |Ω|, which could potentially
complicate the identification for low-Ω values. We there-
fore associate a spherical orbit with spin j to the blocking
configuration with the maximum projection Ω = +j. We
have verified that the amount of splitting in all these nu-
clei does not exceed 150 keV: for the proton i13/2 orbit

in 208Pb, it is 77 keV, and for the neutron 1f7/2 state in
40Ca, it is 124 keV. This implies that the error induced
by cherry-picking a single state out of a 2j + 1 nonde-
generate candidate instead of the average is only on the
order of 60 keV.

Figure 9 compares single-proton energies in 208Pb com-
puted with unedf0 and unedf1 with the experimental
values. Although the differences between these two func-
tionals are small, we note that unedf1 improves slightly
the description of several high-j levels except for a too
low position of the 1h9/2 proton orbit that reduces the

size of the Z=82 proton gap. The situation is similar for
the neutron single-particle energies in 208Pb. For both
unedf0 and unedf1 the effective mass is close to one,
which probably explains the fairly good reproduction of
the level density in 208Pb. In the lighter doubly magic
nuclei, differences between unedf0 and unedf1 s.p. en-
ergies are somewhat larger. The magic gaps in Ca iso-
topes are now better reproduced, although the N = 28
gap in 48Ca is still too low.

C. Superdeformed States and Fission Barriers

Table IX lists the excitation energies of superdeformed
(SD) fission isomers in the actinide region and SD band-
heads in the mass A ∼ 190 region calculated with the
unedf0 and unedf1 parameterizations. Contrary to fis-
sion isomers, SD bandheads in neutron-deficient lead and
mercury isotopes were not included in the objective func-
tion, since the prolate-oblate shape coexistence effects,
not captured by current functionals, are well known in
these nuclei [68, 69]. Indeed, calculations with unedf1

predict an oblate ground state at β=−0.2 – −0.15 in all
the Hg-Pb isotopes considered, coexisting with a slightly
higher spherical minimum. By contrast, the ground state
of the three lead isotopes is spherical with unedf0. The
fact that the spherical configuration is disfavored in these
nuclei can be traced back to a too-low Z=82 spherical
proton gap in unedf1, (Sec. VB).

TABLE IX: Excitation energies (in MeV) of fission isomers in
the actinides and superdeformed bandheads in the neutron-
deficient Hg and Pb nuclei calculated with hfbtho. The val-
ues predicted with unedf0 and unedf1 are compared with
experiment.

Nucleus unedf0 unedf1 Exp. Ref.
236U 5.276 2.423 2.75 [46]
238U 5.727 2.709 2.557 [46]

240Pu 5.738 2.510 2.8 [46]
242Cm 5.273 1.851 1.9 [46]

192Hg 6.326 2.623 5.3 [70]
194Hg 7.267 3.788 6.017 [71]
192Pb 5.198 1.245 4.011 [72]
194Pb 5.993 1.985 4.643 [73]
196Pb 7.256 3.515 5.63 [74]

All values listed in Table IX were obtained with the hf-

btho code using the same large HO basis as used for the
optimization. In particular, the deformation of the ba-
sis was spherical for the ground state, and was deformed
with β2 = 0.4 for the FI; see Sec. III B. As can be seen
from Table IX, the optimization improves dramatically
the rms deviation for the actinide nuclei included in the
fit, going from 3.02 MeV in unedf0 to 0.23 MeV in un-

edf1. At the same time, the optimization deteriorates
the description of SD excitations in the Hg and Pb iso-
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topes. To understand this behavior, we again compute

the effective surface coefficient a
(eff)
surf (16) for 194Pb. It

is particularly low, 16.0MeV, for unedf1. Indeed, it is
17.64MeV for unedf0, 17.1MeV for SLy4, 16.50MeV
for BSk6, and 16.36MeV for SkM∗. In addition, the re-
duced Z=82 magic gap in unedf1 energetically favors
deformed and SD states. Consequently, both bulk energy
and shell effects of unedf1 conspire to reduce the exci-
tation energy of SD states in the Pb isotopes. In view of
the major shape coexistence effects recalled earlier, this
behavior is not too worrisome.

In the A ∼ 190 region, the experimental uncertainty
of the SD bandhead comes from the extrapolation of the
rotational band down to spin 0+. The associated error
is estimated to be very small, around 5 keV. In the ac-
tinides, experimental excitation energies of FI are usually
determined with larger uncertainties. While the experi-
mental error bar is only about 5-10 keV for 236,238U, it
grows to about 200 keV for 240Pu and 242Cm. For the
fission isomer of 240Pu, recent measurements lower its
excitation energy by about 500keV to roughly 2.25MeV
[79] compared with the standard value [46] adopted in
this work. Because of the relatively large uncertainty,
wi = 0.5MeV, adopted for FI energies in our objective
function, these experimental uncertainties are not going
to significantly alter the final optimization. For future
work, however, better experimental determination of FI
bandheads should become a priority.

Our long-term goal is to develop an EDF that can ac-
curately predict and describe fission observables in heavy
and superheavy nuclei. We present here some results of
spontaneous fission pathway calculations with unedf1.
All fission calculations were done with version 2.49t of the
code hfodd [80] that can break all self-consistent sym-
metries along the fission path. At each point along the
collective trajectory, the HO basis deformation and fre-
quencies are determined from a standard nuclear surface,
parametrized by surface deformations αλµ. The deforma-
tions were chosen to minimize the energy as a function
of the requested quadrupole moment Q20, according to
the following expressions:

α20 = A Q
3

20 + B Q
2

20 + C Q20,
α40 = 0.01,

(17)

with A = 3.16721× 10−8 b−3, B = −2.75505× 10−5 b−2,
C = 0.00954925b−1, and all remaining deformations
αλµ = 0. The basis contains up to N = 31 shells and
up to N = 1140 states. Such an extended basis was
previously applied in the systematic study of fission bar-
riers in the transfermium region and yielded excellent
convergence [7, 81]. We have checked that hfodd, with
a reduced HO basis as compared with hfbtho calcula-
tions, reproduces the hfbtho energies of FI bandheads
in Table IX with an accuracy of 100-200keV. We consider
this agreement satisfactory considering other uncertain-
ties involved.

Figure 10 displays the potential energy curve of 240Pu
as a function of the mass quadrupole moment Q20. Tri-

axiality and reflection asymmetry effects are included.
We note that the unedf1 functional yields both the in-
ner and outer barrier in 240Pu fairly close to experiment.
Both unedf0 and unedf1 functionals also yield the g.s.
binding energy that is close to the empirical value.
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FIG. 10: (Color online) Fission pathway for 240Pu along the
mass quadrupole moment Q20 calculated using hfodd with
SkM∗, unedf0, and unedf1 EDFs. The ground state energies
have been normalized to zero. EII , EA, and EB indicate,
respectively, the experimental energy of fission isomer and
the inner and outer barrier heights [75].

The unedf1 results for fission barrier heights in se-
lected actinide nuclei are listed in Tables X (inner bar-
rier) and XI (outer barrier). For comparison, we also list
the empirical barrier heights from the Reference Input
Parameter Library (RIPL-3) [75]; the HFB fission barri-
ers obtained by fitting the neutron-induced fission cross
section [76]; and predictions of ETFSI [77], FRLDM [78],
and HFB-14 [28] models, together with hfodd calcula-
tions with the SkM∗ EDF. Overall, the description of ex-
perimental data by unedf1 is very reasonable, with the
rms deviations from experimental values of EA asnd EB

comparable to the values obtained in more phenomeno-
logical models. One can thus conclude that fission barri-
ers are reliably described at the HFB level with the un-

edf1 functional. This result is remarkable since it was
obtained by adding only four excitation energies to the
dataset.

There seems to exist an interesting relation between
barrier heights and the surface thickness. We have eval-
uated the surface thickness in 208Pb from the charge form
factor σch as defined, e.g., in Refs. [4, 20] and found
σch = 0.932 fm for unedf0 and σch = 0.907 fm for un-

edf1. This is to be compared with the measured value of
σch = 0.913 fm [20]. It is apparent that the EDF which
does well on fission barriers also performs well for surface
thickness. The functionals SV-min and SV-bas which in-
cluded σch in the fit, and yield values around 0.91 fm
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TABLE X: Empirical and theoretical inner barrier heights EA (in MeV) for selected actinide nuclei. The rms deviations from
experiment are ∆EA are shown in the last row.

Nuclide Exp. [75] HFB+Exp. [76] ETFSI [77] FRLDM [78] HFB-14 [28] SkM∗ unedf1

236U 5.00 5.52 5.20 4.45 5.52 6.93 6.39
238U 6.30 5.80 5.70 5.08 5.93 7.25 6.50
238Pu 5.60 5.57 5.40 5.27 5.96 7.39 6.83
240Pu 6.05 5.89 5.80 5.99 6.49 7.51 6.77
242Pu 5.85 6.02 6.20 6.42 6.81 7.44 6.59
244Pu 5.70 - 6.40 6.59 6.85 7.82 6.10
242Cm 6.65 6.20 6.10 6.56 6.75 8.76 7.12
244Cm 6.18 6.18 6.40 6.92 7.10 8.81 6.99
246Cm 6.00 6.00 6.50 7.01 7.31 8.41 6.69
248Cm 5.80 - 6.50 6.80 7.25 7.94 6.12

∆EA 0.47 0.75 0.87 1.97 0.79

TABLE XI: Similar to Table X except for the outer barrier heights EB (in MeV).

Nuclide Exp. [75] HFB+Exp. [76] ETFSI [77] FRLDM [78] HFB-14 [28] SkM∗ unedf1

236U 5.67 6.03 4.00 5.03 6.03 6.70 5.56
238U 5.50 6.17 4.90 5.64 6.48 7.36 6.42
238Pu 5.10 5.35 2.90 4.47 5.24 5.99 4.62
240Pu 5.15 5.73 3.40 4.91 5.61 6.40 5.42
242Pu 5.05 5.61 3.60 5.72 6.02 6.90 6.20
244Pu 4.85 - 3.90 6.47 6.25 7.49 6.50
242Cm 5.00 4.90 1.70 4.45 4.51 6.31 4.08
244Cm 5.10 5.10 2.10 5.07 4.83 7.00 5.03
246Cm 4.80 4.80 2.40 5.87 5.23 7.42 5.51
248Cm 4.80 - 2.60 6.65 5.25 7.32 5.55

∆EB 2.11 0.94 0.70 1.89 0.84

for this quantity, happen to perform well concerning bar-
rier heights [44]. The relation between fission barriers
and surface thickness deserves closer inspection in future
work.

D. Neutron Drops

Recently, there has been a considerable interest in
studies of inhomogeneous neutron matter by consider-
ing finite systems of N neutrons; specifically, neutron
drops [82, 83]. Since neutron drops are not self-bound
[84], an external potential must be used to confine them.
By studying neutron drops, one can test different ab ini-
tio approaches and their correspondence to DFT calcu-
lations [82, 83]; investigate the validity of the density
matrix expansion [85]; and develop a theoretical link be-
tween neutron-rich nuclei and the neutron matter found
in the neutron star crust [86].

Figure 11 presents the results of unedf0 and unedf1

calculations for neutron drops confined by two external
HO traps with ~ω = 5 MeV and 10 MeV. The DFT re-
sults are compared with ab initio AFDMC benchmark

calculations of Ref. [83] employing the AV8’ nucleon-
nucleon and Urbana IX three-nucleon force. As can
be seen, unedf0 reproduces AFDMC results well, es-
pecially since the functional has not been constrained to
finite neutron matter. The agreement with unedf1 cal-
culations is also good, especially for a softer trap with
~ω = 5MeV.

In future EDF optimizations we shall include ab initio
predictions for neutron drops into the dataset. By pro-
viding unique constraints on finite neutron matter, such
pseudo-data are expected to improve the description of
very neutron-rich nuclei and diluted neutron matter. The
results shown in Fig. 11 indicate that unedf0 and un-

edf1 functionals represent excellent starting points for
such optimizations.

VI. CONCLUSIONS

By performing nuclear energy density optimization at
the deformed HFB level, we have arrived at the new
Skyrme parameterization unedf1. Our main focus was
to improve the description of fission properties of the
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FIG. 11: (Color online) Comparison of unedf0 and unedf1

predictions for the energy N-neutron drops trapped in a HO
potential with ~ω = 5 MeV and 10 MeV with the AFDMC ab
initio results of Ref. [83].

actinide nuclei and to provide a high-quality functional
for time-dependent applications involving heavy systems.
The only notable change in the form of the energy den-
sity as compared with our previous work [22] was the
removal of the center-of-mass correction. For the χ2-
minimization, we used the derivative-free pounders al-
gorithm. Compared with unedf0, the dataset was en-
larged by adding ground-state masses of three deformed
actinide nuclei and excitation energies of fission isomers
in 236,238U, 240Pu, and 242Cm. For the optimal param-
eter set, we carried out a sensitivity analysis to obtain
information about the standard deviations and correla-
tions among the parameters. We conclude that unedf1

remains as robust under a change of individual data as
unedf0.

Overall, unedf1 provides a description of global nu-
clear properties that is almost as good as that of un-

edf0. Not surprising, the quality of data reproduction is
slightly degraded: by adding a new type of data (fission
isomers), one is bound to worsen the fit for other observ-
ables. The most striking feature of unedf1 is its ability
to reproduce the empirical fission barriers in the actinide

region. We find it encouraging that, by including only a
handful of discrete energy states, deformation properties
of the functional seem well constrained. Another unan-
ticipated property of unedf0 and unedf1 is their ability
to reproduce ab initio results for trapped neutron drops.
This is significant because such pseudo-data will be used
in future EDF optimizations.

In addition to imposing new constraints on neutron
drops, in the next step we intend to improve the spec-
troscopic quality of unedf functionals by considering
the experimental data on spin-orbit splittings and shell
gaps. We shall also improve the density dependence of
the kinetic term by adding new constraints on giant res-
onances. Meanwhile, the functional unedf1 developed
in this work will be the input of choice for microscopic
studies of the nuclear fission process.
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[52] J. Moré and S.M. Wild, ACM Trans. Math. Soft. 38, to

appear (2011).
[53] S. Goriely and J.M. Pearson, Phys. Rev. C 77, 031301

(2008).
[54] B.A. Brown, Phys. Rev. C 58, 220 (1998).
[55] S.A. Fayans, JETP Letters 68, 169 (1998).
[56] A. Bulgac and V.R. Shaginyan, Nucl. Phys. A 601, 103

(1996).
[57] A. Bulgac and V.R. Shaginyan, Phys. Lett. B 469, 1

(1999).
[58] M. Kortelainen, R.J. Furnstahl, W. Nazarewicz, and

M.V. Stoitsov, Phys. Rev. C 82, 011304 (2010).
[59] P.-G. Reinhard, M. Bender, W. Nazarewicz, and T.

Vertse, Phys. Rev. C 73, 014309 (2006).
[60] S. Goriely, M. Samyn, M. Bender, and J.M. Pearson

Phys. Rev. C 68, 054325 (2003).
[61] K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316

(2003).
[62] M. Anguiano, J.L. Egido, and L.M. Robledo, Nucl. Phys.

A 683, 227 (2001).
[63] T. Lesinski, T. Duguet, K. Bennaceur, and J. Meyer,

Eur. Phys. J. A 40, 121 (2009).
[64] N. Schunck, J. Dobaczewski, J. Moré, J. McDonnell, W.
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Máté, A. Metz, M.J. Chromik, Phys. Lett. B 505, 27
(2001).

[80] N. Schunck, J. Dobaczewski, J. McDonnell, W. Satu la,
J.A. Sheikh, A. Staszczak, M. Stoitsov, P. Toivanen,
Comp. Phys. Comm. 183, 166 (2012).

[81] A. Staszczak, J. Dobaczewski, and W. Nazarewicz, Int.
J. Mod. Phys. E 14, 395 (2005).

[82] B.S. Pudliner, A. Smerzi, J. Carlson, V.R. Pandhari-
pande, S.C. Pieper, and D.G. Ravenhall, Phys. Rev. Lett.
76, 2416 (1996).

[83] S. Gandolfi, J. Carlson, and S.C. Pieper, Phys. Rev. Lett
106, 012501 (2011).

[84] S.C. Pieper, Phys. Rev. Lett. 90, 252501 (2003).
[85] S.K. Bogner, R.J. Furnstahl, H. Hergert, M. Kortelainen,

P. Maris, M. Stoitsov, and J.P. Vary, Phys. Rev. C 84,
044306 (2011).

[86] D.G. Ravenhall, C.J. Pethick, and J.R. Wilson, Phys.
Rev. Lett. 50, 2066 (1983).


